How to build a simple blog with
Next.js + Tailwind CSS + Contentful

In this tutorial we're going to explore how we can build a basic blog with the
following technology:

e Next.js as main React framework, with support for Static Rendering

e Tailwind as CSS framework

e Contentful for creating and managing the content without worrying about
building an actual backend

Before diving into the actual process, let’s have a quick overview of the topics we are
going to cover.

Static Rendering

One of the powerful features provided by Next.js is that we can write Server
Components. This allows us to use an approach called Static Rendering, which
means that all the HTML pages will be pre-rendered at build time. The front-facing
site will not send any requests to the backend (in this case Contentful). The
Contentful APl will be, in fact, queried only when we run the next build command
and generate the static files. This will result in excellent page performance since the
content doesn’t have to be fetched on the client side.

Tailwind

Tailwind is, as per their definition, a “utility-first CSS framework”. What makes it
different compared to other CSS frameworks is that it doesn’t impose any design
specifications. Class names are pre-defined and each class we are going to use is, in
most cases, doing one thing and one thing only.

Let's say | want to apply some very basic styling to an H1 element. With a Vanilla
CSS approach, | would do something like this:

https://nextjs.org/
https://tailwindcss.com/
https://contentful.com/
https://nextjs.org/docs/app/building-your-application/rendering/server-components

<hl class="myCustomClass">This is a sample text</hl>

And then, in the CSS file:

hl.myCustomClass {
font-size: 36px;
text-align: center;
color: rgh(34 197 94);
font-weight: bold;

In Tailwind, to obtain the exact same result, we would use this syntax:

<hl class="text-4x1 text-center text-green-500 font-bold">This
is a sample text</hl>

As we can observe, we used a specific class for each one of the CSS definitions.

The full list of available classes can be found in the official documentation.

Is this really an improvement?

This was the first question that came to my mind the first time | stumbled across
Tailwind and | still think it's a valid concern. At first glance it might look like we're
writing inline styles, which goes against the concept of separation of concerns. Also,
the HTML markup already looks quite messy even with the very basic styling of the
example, therefore we can expect it to be way more polluted once we apply some
more advanced styling.

However, this approach brings several benefits as well:

¢ No class names. Having to choose names for classes in a consistent and
organized way can be a difficult task, especially on projects with multiple
contributors. Here we don't have to worry about this since we are going to use
pre-existing utility classes.

https://tailwindcss.com/docs/installation
https://en.wikipedia.org/wiki/Separation_of_concerns

e Responsiveness out of the box. Tailwind comes with an excellent mechanism for
creating responsive websites. We just need to use prefixes like sm:, md: etc. to
target the most common viewport breakpoints, without having to write our own
media queries.

e CSS bundle is optimized. The build process of Tailwind includes only the classes
that are actually used in the project, making sure that we end up with the
smallest possible CSS file (especially when this is combined with minification and
network compression).

Project Setup

Now that we have an overview of what we want to build, let’s dive into the actual

project creation.
The good news is that, since March 2023, the --tailwind flag is officially part of

the create-next-app CLI tool. This means that we can bootstrap a Next.js project
with Tailwind in less than a minute.

Let’s open the terminal and run:

yarn create next-app

When prompted, let's answer the questions as follows:

What is your project named? simple-blog-demo

Wou'ld
Wou'ld
Wou'ld
Wou'ld
Wou'ld
Wou'ld

you
you
you
you
you

you

like
like
like
like
like
like

to
to
to
to
to
to

use TypeScript? Yes

use ESLint? Yes

use Tailwind CSS? Yes

use 'src/ directory? Yes

use App Router? (recommended) VYes

customize the default import alias? No

After the installation let's go to our newly created directory, run yarn start dev
and open the browser on http://localhost:3000/ to see what we have so far.

http://localhost:3000/

If everything worked as expected we should see this:

Get started by editing src/app/page.tsx By AVercel
NEXT.s
Docs > Learn > Templates > Deploy >
i depth information about Learn about Nextjs in an Explore the Next.js 13 nstantly deploy your Next.js
Next js features and AP interactive course with quizzes playground site to a shareable URL witt

Vercel

This page was generated automatically by create next-app

Our project with Next.js + Tailwind is ready. Let’s now do some preparation work for
the content part.

Set up content in Contentful

As mentioned earlier, the blog content will be entirely managed by Contentful.
We can create a new account, or use an existing one, and then click on “Content
Model” on the top menu.

= TE SimpleBlog Demo

A Home J Contentmodel & Content [d Media 4 Apps «

First, design the content model

The content model is a collection of all different types of content
for a project (like the green boxes on the right <). It's a schema
that editors repeatably use and fill with content. Learn More

ii[1e) Heagine
- Hero image
o i Here image
Design your content model Sumame eo®
Author

\\\\\\

If we don’t have any pre-existing content types we just have to click on “Design your
content model”. Otherwise, we can just click on “Add Content Type” in the top right.

We will be asked to choose a name, let’s go with “Blog”. We can also add a
description if we want, but it's not necessary for our demo.

Now that we have the content model it's time to define our fields. Let’s click on “Add
field”, and select the type of field we need to create. | created a quick recap of the
fields that we will need and their type. Please keep in mind that Field ID will be auto-
filled when typing the name, so we will probably not need to type it at all.

Name Field ID Field Type Notes
Title title Text (Short text, exact “This field
search) represents the
Entry title"
should be

checked in the
field properties

Slug slug Text (Short text, exact In Appearance

search) make sure that
Slug is
selected. In
Validation
check the
“Unique Field”
checkbox.

Date date Date and Time

Content content Rich Text

Now that our Content Model is ready, we can create our blog posts. In my case, |
created some dummy articles using Chat GPT just for the sake of the demo. Another
option could be using the good old Lorem Ipsum or, even better, writing our own
actual content.

C = Blank vel up your free plan | # Upgrade | Q) (@ Help @

#A Home Contentmodel (& Content [d Media & Apps =

Content @ Content type Type to search for entries = Filter View v + Add entry

(@© Scheduled Content Name Content Type Updated & Status]

The Art of Demonstrative Writing: An

Shared views My views Analysis of an Article with No Define... Blog afew seconds ago Bublished
" ey e eeoda T Blag a minute ago Published
~ STATUS (4) Welcome to my blog Blog 2 minutes ago Published
Published 1- 3 of 3items
Changed
Draft
Archived

~ CONTENT TYPE (1)

Blog

B2 Add folder

Three sample articles, created with the help of Chat GPT

APl keys

Before we jump back into the code we need to do one more thing: create an API key.
This will be used by our project in order to retrieve the content from Contentful.

Let's go to Settings > API keys > Add API key. Once this is done, let’s take note of
these credentials:

e SpacelD

e Content Delivery API - access token

That's all we needed to do on the Contentful dashboard, therefore it’s time to go
back to our project.

Install Contentful client in the project

Contentful provides a Javascript library for both the Content Delivery APl and the
Content Preview API. This is great news for us because we don't need to re-invent
the wheel for fetching our previously created content.

Let’s go back to our terminal and run:

yarn add contentful

Now that the Contentul library is installed we can go to src/app/page. tsx, afile
that was created during the installation process and that we will use as the blog
listing page.

We will find a some existing code here, all related to the demo page that we saw
earlier. We can clean that up and just replace the whole main content with a

temporary “blog goes here” text.

We can also remove the existing import from next/image since we are not going to
use that.

The whole content of page.tsx should now look like this:

/* page.tsx */

export default function Home() {

return (
<main className="flex min-h-screen flex-col items-center j
ustify-between p-24">
<p>blog listing goes here</p>

</main>

Configure the client
Now we want to set up the connection with Contentful, in order to retrieve our blog

data.
To do that we need to import the library and then set up the client with the

credentials that we stored earlier. Let’s add this on top of the file:

const contentful = require("contentful");

const client = contentful.createClient({
space: "{{put here your space id}}",

accessToken: "{{put here your access token}}",

1)

We can now create the utility for fetching the data. It will be outside of the Home
functional component.

const getBlogEntries = async () => {

const entries = await client.getEntries({ content_type: "blo
g" 1)

return entries;

s

As you can see we used “blog” as content type. This is the name that we defined
earlier when we created the content model on Contentful.

Now we need to invoke the newly created function. And since our function is
asynchronous, the Home component needs to be asynchronous as well.

What before was:

export default function Home() {

will be updated to:

export default async function Home() {

Now that Home is asynchronous we can invoke the getBlogEntries method, just
before the return statement. We also want to make sure that it’s working, so let’s
add a temporary console log there:

const blogEntries = await getBlogEntries();

console.log("Home -> blogEntries", blogEntries)

Time to check if it all works. Keep in mind that data fetching is not happening in the
browser but in the Next.js local development server. As mentioned at the beginning
of the article we are, in fact, taking full advantage of the Static Rendering
capabilities of Next.js and pre-rendering this page at build time. Therefore our
console log is not going to be shown in the browser console but in the terminal
console.

yarn dev 1

Home -> blogEntries {

sys: { type: 'Array' },

total: 3,

skip: O,

limit: 100,

items: [

{ metadata: [Object], sys: [Object], fields: [Object] },

metadata: [Object], sys: [Object], fields: [Objectl] },
metadata: [Object], sys: [Object], fields: [Object] }

r
1

r
1

]
b
(node:31166) ExperimentalWarning: stream/web is an experimental feature. This fe
ature could change at any time

(Use "node --trace-warnings ... to show where the warning was created)

Our 3 sample blog posts are fetched successfully

Looks like it's working!

What about the return type?

A careful Typescript developer will have noticed that we haven’t defined the return
type of getBlogEntries. If we want to use the full potential of Typescript and
minimize the risk of potential mistakes we should declare our expected return type.

First of all we need to install a new dev dependency: Since we are using Rich Text for
the content field, we also need to install the related types in our project:

yarn add --dev @contentful/rich-text-types

Let's create a new file called types.ts inside src/app/ and then define the types
for our data structure:

/* types.ts */

import { Document } from '@contentful/rich-text-types';

export type BlogItem = {
fields: {
title: string;
slug: string;
date: Date;

content: Document;

}
export type BlogItems = ReadonlyArray<BlogItem>;

export type BlogQueryResult = {

items: BlogItems;

Now we can use BlogQueryResult as the return type for getBlogEntries. Let's
keep in mind that this function is asynchronous, therefore the return type will be a
Promise:

const getBlogEntries = async ():Promise<BlogQueryResult> => {

The type BlogQueryResult needs to be imported from types.ts. Our IDE is likely
going to add the import automatically but, if not, we need to add this on top of the
file:

import { BlogQueryResult } from "./types";

Outputting the content

The connection to Contentful works and we have typed our custom data structure.
It's time to output this data into the page and define the basic markup, without any
styling for now.

Where we previously put the <p>blog listing goes here</p> placeholder is
where we will do our actual iteration of content.

To do that we will use the .map function, like this:

{blogEntries.items.map((singlePost) => {

3}

Now, inside the map, let’s extract the fields that we need:

const { slug, title, date } = singlePost.fields;

Finally we will output the preview of our blog post:

return (
<div key={slug}>
<Link href={"/articles/${slug} }>
<h2>{title}</h2>

Posted on{" "}
{new Date(date).tolLocaleDateString("en-US", {
year: "numeric",
month: "long",
day: "numeric",
1}

</Link>

</div>

)

A couple of notes on what we did here:

e We are using slug as the key. React in fact requires us to specify a unique key
prop when we use JSX elements inside a map and slug is a unique identifier of
the blog post (as defined in our Content Model as well)

e We are using the Link component from Next.js which will be needed to navigate
between routes. We are pointing to a route that doesn’t exist yet
(/articles/{{slug}}, we will fix that in a bit.

e Since date is of type Date we are converting it to a readable format (like, for
example, August 17, 2023) using tolLocaleDateString. Potentially we can move
this functionality to an external utility file but to keep it simple let’s leave it here
for now.

Our page.tsx should now look like this:

/* page.tsx */
import Link from "next/link";

import { BlogQueryResult } from "./types";

const contentful = require("contentful");
const client = contentful.createClient({
space: "{{put here your space id}}",

accessToken: "{{put here your access token}}",

1)

const getBlogEntries = async (): Promise<BlogQueryResult> => {
const entries = await client.getEntries({ content_type: "blo
g" 1);
return entries;

I

export default async function Home() {

https://react.dev/learn/rendering-lists#keeping-list-items-in-order-with-key
https://nextjs.org/docs/pages/api-reference/components/link

const blogEntries = await getBlogEntries();
return (

<main className="flex min-h-screen flex-col items-center j
ustify-between p-24">

{blogEntries.items.map((singlePost) => {
const { slug, title, date } = singlePost.fields;
return (
<div key={slug}>
<Link href={"/articles/${slug} }>
<h2>{title}</h2>

Posted on{" "}
{new Date(date).tolLocaleDateString("en-US", {
year: "numeric",
month: "long",
day: "numeric",
1}

</Link>
</div>
)5
1}
</main>

)

We didn’t apply any custom styling so the page will now look a bit messed up. It's
time to make it look nice.

Styling the listing page with Tailwind

The reason why posts are distributed in a strange way on the page is because of
these 2 Tailwind classes that are assigned to the <main> element:

e items-center: equals to align-items: center in plain CSS.

e justify-between: equals to justify-content: space-between in plain CSS.

Since the flex direction of the element is column (see flex-col class) this means
that the content is horizontally centered and vertically equally distributed on the
page.

Let's get rid of those 2 classes, and leave all the other ones:

<main className="flex min-h-screen flex-col p-24">

The content will now be aligned on the top left and we can proceed with styling the
individual elements.

In case our IDE is Visual Studio Code, it’s highly recommended to install the Tailwind
CSS IntelliSense extension. This will in fact help us with autocompleting and syntax
highlighting.

As you probably noticed, the blog entries are now all collapsed, without margins. We
could solve that by adding a margin (top or bottom) to the wrapper div. But, by doing
so, we will have an unnecessary margin on the first (or last) item. Instead, since we
are working with flex, the ideal solution is to use the row-gap property. We will
therefore use the gap-y-8 class from Tailwind, which equals to row-gap: 2remin
plain CSS.

<main className="flex min-h-screen flex-col p-24 gap-y-8">

Let's now go to the <h2> element, which is used for the post title. We want to make
this text bold and bigger:

<h2 className="font-extrabold text-x1">{title}</h2>

e font-extrabold: equals to font-weight: 800;
o text-xl: equals to font-size: 1.25rem; line-height: 1.75rem;

https://marketplace.visualstudio.com/items?itemName=bradlc.vscode-tailwindcss

The Art of Demonstrative Writing: An Analysis of an Article with No Defined Topic
Posted on August 17, 2023

Unveiling the Mystery: Decoding the Significance of a Test Page
Posted on August 16, 2023

Welcome to my blog
Posted on August 15, 2023

The current state of the blog listing page

It's already looking way better, but we want to add an extra touch to it: we want the
title to change the color when hovered. If you check our DOM structure you will
probably notice a problem there: the Link component (which will render a <a> tag
in the page) is wrapping two elements: the h2 title and the span. We ideally want the
title to change color when the whole block is hovered.

In standard CSS we would use a child selector. Something like:

a:hover h2 {
color: rgb(59 130 246);

But how do we do that in Tailwind? This is actually quite simple. We just need to add
a group class to the Link component:

<Link className="group" href={" /articles/${slug} }>

and then, in the "h2" definition we will add this class:

group—-hover:text-blue-500

In this way we are telling our title element to change color when its parent element is
hovered.

We also want a smooth hover transition, therefore let's add the transition-colors
class as well.

The h2 element should now look like this:

<h2 className="font-extrabold text-xl group-hover:text-blue-50
© transition-colors">

{title}
</h2>

L3
The Art of Demonstrative Writing: An Analysis of an Article with No Defined Topic
Posted on August 17, 2023

Unveiling the Mystery: Decoding the Significance of a Test Page
Posted on August 16, 2023

Welcome to my blog
Posted on August 15, 2023

Current state, including hover effect

Creation of the article page

We successfully created our Blog Listing page. Now it's time to create the article
page. As we saw earlier, when using the Link component, we want the page to be
available at this path:

/articles/{article slug}

In order to do this, we need to use a feature of Next.js called Dynamic Routes.

Let's create a new file at this location: src/app/articles/[slug]/page.tsx. By
using the square brackets convention on the folder name we are creating a Dynamic
Segment. Our component will receive a prop called slug which will contain the
dynamic part of the route.

Let’s now create a very basic output on this page:

/* src/app/articles/[slug]/page.tsx */
type BlogPageProps = {
params: {
slug: string;
s
I

export default async function BlogPage(props: BlogPageProps) {
const { params } = props;
const { slug } = params;
return (
<main className="min-h-screen p-24 flex justify-center">
<div className="max-w-2x1">
<hl>you are in {slug}</h1l>
</div>

</main>

https://nextjs.org/docs/pages/building-your-application/routing/dynamic-routes

)3

And now let’s navigate to http://localhost:3000/articles/this-is-a-test
As we can see, slug is received as part of the props, and is therefore dynamic based
on the route. In this specific case it will be: “this-is-a-test".

However, since this is a server component, we have an issue: as long as we are in
development mode, every route we will use (regardless if the slug exists or not) will
work. However, at build time, Next.js will not know which routes should be created,
and therefore none of these pages will be generated at build time.

generateStaticParams

This is where the generateStaticParams magic happens. This Next.js function, used
in combination with dynamic routes, allows us to statically generate routes at build
time:

export async function generateStaticParams() {
const queryOptions = {
content_type: "blog",
select: "fields.slug",
}s
const articles = (await client.getEntries(queryOptions)) as
BlogQueryResult;

return articles.items.map((article) => ({

slug: article.fields.slug,
1))

We can test if this works as intended by running yarn build and then checking the
content of the build folder.

http://localhost:3000/articles/this-is-a-test
https://nextjs.org/docs/app/api-reference/functions/generate-static-params

e |

chunks/596-c294a7d39d9fe754. js
chunks/fd9d1056-a99b58d3cc150217. js
chunks/main-app-67d23e2457dac531.3js
chunks/webpack-ddd118fa4a6ddd176.js

Route (pages) i First Load JS

— o [404 4 KB

+ First Load JS shared by all 5 kB
chunks/framework-8883dle%9he70c3da. js :
chunks/main-d7299844fa56bh5c7.js 29.4 kB
chunks/pages/_app-52924524f99094ab. js 195 B
chunks/webpack-ddd118fa46ddd176.7js 1.64 kB

> (Static) automatically rendered as static HTML (uses no initial props)
e (SSG) automatically generated as static HTML + JSON (uses getStaticProps)

'+ Done in 14.39s.
}=» simple-blog-demo git:(main) X cd .next/server/app/articles

)=» articles git:(main) X 1s
[slugl the-art-of-demonstrative-writing.meta

significance-of-a-test-page.html the-art-of-demonstrative-writing.rsc
significance-of-a-test-page.meta welcome-to-my-blog.html
significance-of-a-test-page.rsc welcome-to-my-blog.meta
the-art-of-demonstrative-writing.html welcome-to-my-blog.rsc

)= articles git:(main) x |}

The build folder contains an HTML file for each of the articles

Back to the project, we now need a function for fetching the content of a single blog
post, based on the slug.

const fetchBlogPost = async (slug: string): Promise<BlogItem>
=> {
const queryOptions = {
content_type: "blog",
"fields.slug[match]": slug,
}s
const queryResult = (await client.getEntries(
queryOptions
)) as BlogQueryResult;

return queryResult.items[0];

Now that we have fetchBlogPost we can use it before our return statement.

const article = await fetchBlogPost(slug);

const { title, date, content } = article.fields;
And we can now replace the content of the h1 tag, to show the actual article title:
<hl>{title}</h1>

Now we need to render the content. Since we used the Rich Text format, this data is
not received as a string but as a structured object. Luckily for us, Contentful is
already providing a utility for transforming this data structure into actual JSX.

Let's install it in the project:
yarn add @contentful/rich-text-react-renderer
and import it at the beginning of the file:

import { documentToReactComponents } from '@contentful/rich-te
xt-react-renderer';

We can now use this to render the article content, right below the H1 title:

{ documentToReactComponents(content) }

Some final touches

The H1 element is currently unstyled, so it doesn’t stand out from the rest of the
article.

Let's add some Tailwind classes to make it look better:

<hl className="font-extrabold text-3x1l mb-2">{title}</h1>

We also are not rendering the post date at the moment. Let’s do that, similarly to
what we did on the listing page:

<p className="mb-6 text-slate-400 ">
Posted on{" "}
{new Date(date).tolLocaleDateString("en-US", {
year: "numeric",
month: "long",
day: "numeric",
1}
</p>

As you probably noticed, the article content doesn’t have any formatting, since
Tailwind is resetting all the browser default styles.

Obviously, we can’t use inline styles here, because the html elements (h2, p, etc.) are
rendered by documentToReactComponents. However, Tailwind also allows us to
target the children of an element with a special selector. Let’s wrap our contentin a
div and use this syntax:

<div className="[&>p]:mb-8 [&>h2]:font-extrabold">
{ documentToReactComponents(content) }

</div>

As you can see we are targeting the children and assigning a margin-bottom to all p
elements and making all the h2 elements extra bold.

Finally let's have a look at our article page:

The Art of Demonstrative Writing: An
Analysis of an Article with No Defined Topic

Welcome to a literary journey that defies convention and embraces the boundless world
of demonstrative writing. In this unique exploration, we will dissect an article that dares
to step into the realm of the undefined, challenging the very essence of what we expect
from the written word.

Breaking Free from Conventions

In a world where articles, essays, and blogs often conform to rigid structures and
predefined topics, we present an experiment in creative expression. This article, or
rather, this canvas of words, embarks on a liberating quest—free from the constraints of
traditional subject matter.

The Power of Words Unleashed

As we navigate through this uncharted territory of writing, we will uncover the immense
power that words possess when set free from the confines of a predetermined theme.
Demonstrative writing invites us to observe how language itself can shape meaning,
leaving room for interpretation and imagination to take the reins.

ing Ambiguity and Interpr
Prepare to embrace ambiguity and relish the beauty of interpretation. In this analysis, we
will explore how an article without a defined topic invites readers to participate actively
in the process of meaning-making. Each word becomes a brushstroke on the canvas of
your mind, allowing you to paint your own mental picture.

A Journey of Discovery

Our journey will take us through the intricacies of demonstrative writing, discussing the
techniques and stylistic choices that transform an ordinary article into an extraordinary
piece of art. We'll delve into the author's intention, the reader's role, and the

Time to deploy!

First of all, let's push our code in a new repository on GitHub. Once this is done we
can head over to https://vercel.com/new (If we don’t have an account we can sign
up with GitHub).

We will be asked to install the GitHub application, in order to be able to choose our
repository. Once this is done we should be able to see the repository in the
dropdown:

https://vercel.com/new

Import Git Repository

O : Q. Search...

@ simple-blog-demo & - 20m ago

Missing Git repository? Adjust GitHub App Permissions —

After the import is done all we have to do is to click Deploy, in the Configure Project
panel.

Configure Project

Project Name

simple-blog-demo

Framework Preset
o Next.js v

Root Directory

Edit

> Build and Output Settings

> Environment Variables

Deploy

If everything worked as expected, we should see a “Congratulations! You just
deployed a new Project to Vercel” message.

We can navigate to the preview URL and see our demo blog in action:

] o ~ < 0 simple-blog-demo.vercel.app] C ﬁ] =+

The Art of Demonstrative Writing: An Analysis of an Article with No Defined Topic
Posted on August 16, 2023

Welcome to my blog
Posted on August 14, 2023

Unveiling the Mystery: Decoding the Significance of a Test Page
Posted on August 15, 2023

The live version of our blog

One more thing...

Our blog is now deployed and it's entirely statically generated at build time, giving us
the best possible page performance. But what happens if we edit some content or
create a new article?

With the current implementation, we will need to go to the Vercel dashboard and
trigger a re-deploy of the application. A new build will, in fact, fetch again the
content from Contentful APl and therefore use the updated content in the new
deploy. However there's a simple procedure to automate this process so that we
don’t have to worry anymore about manual deploys.

Setting up a Webhook

In the Vercel dashboard, let’s go to Settings = Git.

Now let’s scroll to Deploy Hooks. Here we can create a new Hook and give it a
custom name. We also need to specify a branch ("main” in my case).

When the hook is created we will get a link. Let’s copy it, we will need it in a bit.

Let's log again in to the Contentful dashboard. Then Settings > Webhooks.
Here we can set up a new Webhook connection. Contentful provides a Webhook
template for Vercel (in the right sidebar). Let's find it and then click “Add".

The modal will ask for the Vercel deploy hook URL. Let’s paste the link that we
previously copied.

Webhook Templates

TEMPLATES (18)
Vercel
Vercel

Deploy a site « Deploys a Vercel site

Gitlab * Triggered when an entry or asset is published or unpublished

Trigger a pipeline * Scoped to events in the master environment

Bitbucket
Trigger a pipe“ne Vercel deploy hook URL (required)

o €

AWS Lambda
Invoke a function
Enterprise plan
only

https://api.vercel.com/v1/integrations/deploy/pri_MO2E6WeRDONPfY4’ J

Q

To get the URL refer to Vercel’s documentation.
Google Cloud
Run a function

L

Slack Webhook © All properties can be updated later.

Notify a channel

. Create webhook Cancel
Twilio

Send a SMS

Mailgun
Send an email

AWS SQS

@ ® ¥

The automated deploy Webhook is now created. From this moment on, any
published change on Contentful will automatically trigger a new deploy on Vercel.
We can also check the history of Webhook calls in the Contentful dashboard, by
going to Settings > Webhooks.

Conclusion

Our minimal blog is now live and functional. If you made it until here, you now have a
basic but solid understanding on how to create a project from scratch with Next.js +
Tailwind + Contentful.

My recommendation, in order to extend our knowledge and confidence with these
frameworks, is to start our own project (not necessarily a blog, it can be anything)
and use this tutorial as a foundation. Thanks for reading!

